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Abstract — Neural probes are made on silicon substrate
using a micromachining process with low temperature steps
only. A deep silicon etch (“Bosch”) process was used for the
probe shaping. CMOS compatibility of the process was
checked and reported in this paper. Test transistor patterns
generated using standard CMOS fabrication line were exposed
to a post-CMOS probe making process including dielectric
deposition, gold metalization and the dry etching step, while
changes of test transistor characteristics were monitored.
Threshold voltage was found virtually unchanged for both n-
and p-type MOS transistors. When excess plasma exposure
was done, however, non-trivial shift in p-MOS threshold was
observed.
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I. INTRODUCTION

Silicon-based microelectrode for the neural recording and
stimulating have been developed because the silicon
microelectrode have many advantages over conventional
metal wire bundle[1]. Active circuitry on the silicon
microelectrode can be monolithically integrated so that
impedance buffering, amplification, and multiplexing can
be done[2]. We have previously reported on the process of
making a new type of silicon microelectrode[3]. The shank
of the microelectrode was made controllable with use of dry
etch on the front side and backside. In contrast to the
process developed in University of Michigan, our process
uses only low temperature steps so it can be applied to
completed CMOS chips. The advantage of this approach is
that we can use the vendor CMOS services such as MOSIS.

This paper reports on the methods and results of the

CMOS
compatibility of the probe shaping steps we developed.

experiments we performed to verify the

II. METHODOLOGY

A. Probe Shaping Process

A needle-like shank of a neural probe was fabricated by
isotropic etching of the backside of a silicon wafer after
making ridge-like structures on front-side. A deep silicon
etch process - called Bosch process - was used. The etch
rate was about 2um/min and the etch selectivity against
positive photo-resist was more than 30. When a photo-
resist of 5um thickness is used, we can easily control the

thickness of probe-shank up to 150.m.

B. Test Circuit Design

MOSFET patterns and source-followers were designed
in order to specify the CMOS compatibility with the
micromachining post-process. We varied the gate lengths of
n-type MOSFETs and p-type MOSFETSs to be 1.5um, 2um, 3
(m, and 5¢m, with fixed gate widths of 20um. In addition to
the test MOSFET patterns, source-follower that was widely
used as a unity gain buffer of typical neurophysiological
experiment setup was also integrated. P-type MOSFETs
were used because they, with large gate dimensions, are

known to have reduced noise levels when used in source-

followers[4].

C. Fabrication
The test transistors and circuits were fabricated using a 1.5
(m  standard CMOS process service offered by the

ISRC(Interuniversity Semiconductor Research Center) of
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Fig.1, Photomicrograph of a completed circuit die. The chip is fabricated

using a 1.5¢4M CMOS process with a die size of 3mm x 6mm.

the SNU(Seoul National University). This process is a
double metal, single poly process with a gate oxide
thickness of 250A. After the CMOS process, the
micromachining process discussed above was performed to
achieve the structure of the neural probe. Figure 2 shows the
process flow. First, a triple dielectric layer consisting of
PECVD silicon dioxide(200nm), silicon nitride(200nm),
and silicon dioxide(800nm) was deposited on the wafer
completed with the CMOS process. The recording sites
were then opened by plasma etch and inlaid with gold.
Bonding pads were also opened as shown in figure 2(b).
The front side of a wafer was then etched to make the ridge-
like structures as shown in figure 2(c). This Bosch process
was done at 9W power for 45minutes. Finally the backside
of the wafer was etched out using isotropic etching and the

process was completed.

D. Measurement

In order to verify the CMOS compatibility of the post-
CMOS micromachining process, the threshold voltages of
test MOS patterns and the DC characteristics of source-
followers were measured at the following three phases: 1)
after the standard CMOS process, 2) after the site opening
and gold metalization, and 3) after the deep silicon etching.
A probe station and a semiconductor parameter analyzer

(4155A, Hewlett Packard) were used in circuit tests.

II1. RESULTS

(b)

(c)

Fig.2, Process flow of the probe-shaping micromachining process. (a)
standard CMOS process, (b) Dielectric deposition, Au metalization and site

opening, (c) Deep silicon etch process.

Figure 3 shows the microphotography of a completed
neural probe that contain on-chip source-followers and test
MOSFET patterns. The shank-thickness was 60um. This
should well penetrate pia and dura maters of some animals
without breakage [5]. The fabricated structure using Bosch
process is proven as flexible as the one we earlier made
with LTO/dry etch process [3], in terms of controlling the
shank thickness.

Figure 4(a) and (b) show the measured threshold
voltages of test transistors. Both threshold voltages of n-
type and p-type transistors remain virtually unchanged after
the Au metalization and deep dry etch. However, when
additional plasma dry etch process was performed on the
backside of the wafer at 200W power for 240mins to
remove the excess silicon by dry etch, a shift in threshold
was observed especially in p-type MOSFETs. Nevertheless,
the DC characteristics of source-followers were not seen
significantly altered by this threshold shift as shown in
Figure 4 (c).

IV. DISCUSSION AND CONCLUSION

We have developed a neural probe-shaping process
based on a deep silicon etch. This process is effective in
controlling the shank thickness as in the other process we

previously reported using LTO/dry etch. In order to verify



the CMOS compatibility of the said process, we designed
MOS patterns and a source-follower, and tracked their
characteristics at three phases of the process. We could
verify the CMOS compatibility of the process and proved
that the low power Bosch etch process did not cause
significant plasma damage that causes threshold changes.
However, when a plasma etch process at higher power and
for longer duration was added, some shifts in thresholds (a
shift of a few tenths of a volt) occurred in the case of p-type
MOS. The reason why it affected p-type MOS but not the n-
type one, requires further investigation. Furthermore, such
high power, MOS-damaging plasma etch process for the
backside would not be required if the backside etch is done
employing one of the widely used wet chemical etching

techniques, such as EDP and KOH etching.

Fig.3, Photograph of a silicon microelectrode with on-chip test MOSFET

patterns and source-followers. The overall length of the probe is 6mm.
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(c) Source follower DC characteristic curve
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Fig.4, The changes of DC characteristics during the probe-shaping
micromachining process of (a) PMOSFETs, (b) NMOSFETs, and (c)

source followers.
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